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ABSTRACT: Molecular weight distribution, which is
characterized by its averages like number average (Mn)
and weight average (Mw), is one of the important prop-
erties of polybutadiene rubber (PBR), and it is difficult to
measure. The objective of this work is to develop models
to predict Mn and Mw from readily available process
variables. Neural networks that are capable of mapping
highly complex and non-linear dependencies have been
adapted to develop models for the Mn and Mw of PBR.
The molecular weight distribution and its averages of PBR
samples collected over a wide range of operating condi-

tions were measured by the conventional Gel Permeable
Chromatograph (GPC) method. Neural networks were
trained with relevant data to predict Mn and Mw from
process variables. The trained networks were found to
generalize well when tested with new data. © 2005 Wiley
Periodicals, Inc. J Appl Polym Sci 96: 1611–1618, 2005
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INTRODUCTION

Molecular weight distribution is one of the important
properties of polymers as it influences the physical, me-
chanical, and rheological properties of the polymers.
Generally, molecular weight distribution of a polymer is
characterized by molecular weight averages, like num-
ber average (Mn), weight average (Mw), z- average (Mz),
and their ratio Mw/Mn known as poly dispersity. Small
differences in low or high molecular weight fractions can
result in significant differences in end use properties.
The molecular weight distribution of a polymer is
widely used in quality control, monitoring product sta-
bility and reclaiming off spec material, and development
of new grades.1 In the plant operating conditions are set
in such a way that the polymer of desired molecular
weight characteristics is produced. Hence, a model that
estimates the value of these properties as a function of
the process variables would be useful for controlling
these molecular weight properties of the polymer.

PBR is produced by continuous polymerization of 1–3
butadiene in a series of three stirred tank reactors.
Mooney viscosity, solution viscosity, and molecular
weight distribution are important quality properties and
are difficult to measure. Mooney viscosity indirectly rep-
resents molecular weight and is measured once in two
hours off line in the plant laboratory. Fluid viscosity is

measured once a day in the laboratory. Molecular
weight is not measured as frequently as viscosity due to
the tedious, complex, and time consuming GPC method.
The resulting measurement delay and infrequent feed-
back makes automatic process control impossible. This
can be overcome by development of a model that can
infer the quality of the product properties from easily
available process variables. Changes in some of the vari-
ables indicate changes in product quality. Hence, this
work has been undertaken with an objective to develop
an inferential model to predict Mn and Mw of PBR from
major process variables by using the neural network
approach. The trained neural networks can be used to
generate the estimates of product quality corresponding
to process variables instantaneously. Then the estimates
can be used for process monitoring and control.

PROCESS

PBR is produced by polymerization of 1–3 butadiene in
three continuous stirred tank reactors in series. The
monomer, the solvent, and the catalyst system compris-
ing of the catalyst, the cocatalyst, and the chain modifier
are mixed thoroughly before entering the first reactor.
The reactors are provided with jackets for temperature
control and an agitator of a double helical ribbon type for
mixing of high viscosity polymer solution. The reaction
temperature is approximately 60–70°C, and about 88%
of the monomer is converted into the polymer at the
outlet of the last reactor. In the first reactor, a large
amount of polymerization heat is generated, and the
heat is removed by a combination of the sensible heat
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required to heat up the reactor feed (monomer and sol-
vent) and of the heat required to vaporize the refrigerant
in the jacket. In the second and third reactors, a compar-
atively smaller amount of the polymerization heat is
generated, and the heat is removed by a combination of
the sensible heat required to heat up the incremental
solvent to be used in the second and third reactors. The
reactants enter from the bottom of the reactors and come
out from the top. After the polymer is formed, the con-
version and the physical properties, such as Mooney
viscosity, are analyzed and they are controlled so that
they fall within each process control standards. The
Mooney viscosity is controlled by the chain modifier
level and traces of moisture in the solvent. The polymer
solution produced is mixed with a chain modifier and an
antioxidant and held in the blend tank, and the final
control of physical properties in the polymerization step
is performed by the blending operation.

EXPERIMENTAL

PBR samples were collected from the first reactor out-
let (R1) and the third reactor outlet (R3) once in two
hours for analysis. The two hourly samples are mixed
together to get composite samples for R1 and R3, and
a portion of it is used for analysis of molecular weight
distribution by the conventional GPC method. The
number of samples analyzed for molecular weight
distribution from R1 is 23 and from R3 is 72.

The molecular weight distribution of PBR samples
was measured by GPC using a Waters Model GPC 150C
at a temperature of 85°C with toluene as the solvent. The
method involves dissolution of the polymer sample in
the solvent to make a dilute polymer solution. Around 1
mg of PBR sample was dissolved in toluene. The disso-
lution time is optimized to 24 hours after trying various
times starting from 4 to 48 hours. The dilute polymer
solution is pumped across a packed column with a de-
fined distribution of porosity. The packing material used

in the column is a highly cross-linked porous styrene
divinyl benzene gel.2

The polymer is separated based on the hydrody-
namic volume of the polymer fractions. The molecular
weight of each fraction will have different elution
times corresponding to their residence time in the
pores. Molecules too large to penetrate any of the
pores are totally excluded from the column and elute
first. Slightly smaller molecules penetrate some of the
pores, are retained on the column, and elute some-
what later. Molecules small enough to penetrate all of
the pores are retained on the column longest and elute
last. The elution profile represents the molecular
weight distribution. The amount of eluted polymer is
determined by measuring the concentration by means
of the refractive index.

Once all the fractions of the sample are separated, the
molecular weight of the fractions are determined from
the calibration curve obtained by using narrow distribu-
tion polystyrene standards. Universal calibration3 proce-
dure was followed to calculate molecular weight distri-
bution of PBR samples. Figures 1–3 show the molecular
weight distribution of PBR samples from R1 and R3.

Neural networks

Artificial neural networks (ANN) are renowned for
their utility as universal approximators of complex
non-linear relationships between process variables
and product quality properties.4 The success of the
network depends on the selection of process variables,
the quality of the data, and the type of network used.
In the present work, the most widely used feed for-
ward network with one hidden layer is used.5 Figure
4 shows the typical structure of an artificial neural
network. The neurons are represented by a circle. Each
neuron in the hidden layer (upper layer) receives
weighted inputs plus bias from each neuron in the
input layer or layer below it:

Figure 1 Molecular weight distribution of samples from R1.
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f1i � �
j�1

S

Wijpj � bi (1)

where p is the input matrix, w is the initial weight
matrix, b is the bias, and S is the number of variables
in the input matrix. The output of the layer, ai, which
is input to the next layer, is calculated by tan-sigmoid
transfer function as:

a1i � 2/(1 � exp( �2*f1i)) � 1 (2)

f2k � �
i�1

N

lwika1i � bk (3)

where lw is the layer weight matrix, bk is the bias, N
is the number of neurons in the hidden layer, k is the
number of targets in the output layer; and the output
of the output layer a2 is by linear transfer function,
which is:

a2k � f2k (4)

The values of weights and bias are set during the
network training process. Initially, the weights are set
randomly. The neural networks are trained by input
and target data sets. The data set is divided randomly
into a training set and testing sets. The training set is
used to train the network to adjust the weights. The
training of the network involves adjusting the values
of the weights and bias so that the error between
target values and the predicted values is minimum.
The Levenberg–Marquardt back propagation minimi-
zation algorithm is used to adjust the weights. The
mean square error is calculated by:

MSE � (�
1

n �
1

k

(tpred. � tact.)2)/nk (5)

where n is the number of data points, and k is the
number of targets.

RESULTS AND DISCUSSION

The important process variables that control the prod-
uct quality include flow rates of monomer and sol-
vent, purity of monomer and solvent, catalyst ratios,
reaction temperature, traces of moisture, and shear
rate. In the plant the average of all the process vari-
ables over a day is compiled. The process variable data
corresponding to the samples collected for molecular
weight measurement was compiled as the input ma-
trix. The Mn and Mw of samples from R1 and R3 are

Figure 2 Molecular weight distribution of samples from R3.

Figure 3 Molecular weight distribution of samples from R3.

Figure 4 Typical structure of an artificial neural network.
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targets, and their values were determined from the
molecular weight distribution measured by GPC. The
total number of data points available for training and
testing a network for Mn and Mw of samples from R1
is 23. The total number of data available from R3 is 72.

Multiple linear regression has been performed, and
no relation could be established between the process
variables and molecular weights. The value of corre-
lation coefficient, R, obtained was very much lower
than one and mean square error was high. Multiple
regression has been performed by taking the loga-
rithm of the process variables to map the non-linearity
between the process variables and the molecular

weights. Though there was improvement in R value
and error, it was not significant enough.

Neural network development

The data was examined thoroughly and outliers re-
moved. The input and target are normalized to en-
hance the predictive performance of the network. Data
normalization is very important for process monitor-
ing and soft sensor development networks.

For training, the data has been divided into training
and testing subsets by picking randomly. A three
layer—input layer, hidden layer, and output layer—net-

Figure 5 Optimization of state for Mn and Mw of R1.

Figure 6 Optimization of state for Mn and Mw of R3.
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work has been created with tan-sigmoid transfer func-
tion in the hidden layer and linear transfer function in
the output layer for training the data. The Levenberg–
Marquardt algorithm is used for training the network.

Before training a feed forward network, the weights
and biases were initialized by random generation of
small weights. The sequence of numbers generated is
determined by the state of the random number gen-
erator. For a given network with a specified number of
neurons, the value of state has been varied over a wide
range. The final state has been fixed when the network
performed best with respect to mean square error and
correlation coefficient (Fig. 5 and 6).

Finding the number of neurons is an important task in
neural network development. A number of networks
were trained for the task using different numbers of
neurons until the error criterion was satisfied. The error
criterion is that the network has to perform its best with
respect to mean square error, correlation coefficient, and
test errors. The number of neurons in the hidden layer
was found by trial and error. Figures 7 and 8 show the
number of neurons against mean square error and cor-
relation coefficient for prediction of Mn of PBR from R1.

Since the number of data points is limited, splitting the
data into training and testing sets that are statistically
significant is very difficult. For dealing with small data-

bases, a sliding method has been reported.6 With the
sliding method, the network is trained on all patterns but
one and tested on the pattern that was omitted. The
same process is repeated n times (n being the number of
available training patterns), each time leaving out one
and calculating the error. A similar procedure was
adapted in the present case for R1. For R3 the data has
been divided randomly into training (95%) and test (5%).

The structure of the network was changed by increas-
ing the number of hidden layers to two with the tansig-
moid transfer function. The network was tested with
different training functions, and it was found that the
network performed its best when the Levenberg–Mar-
quartd method was used. The application of the Leven-
berg– Marquardt algorithm to neural network training
was described in literature.7 The log-sigmoid transfer
function has also been tested, and it was found that the
network’s performance was better with the tansigmoid
transfer function. The summary of the structure of the
four networks developed for modeling of Mn and Mw of
R1 and R3 are presented in Table I. The first number in
the number of neurons row indicates the number of
input variables; the second and third numbers, if any,
indicate the number of neurons in hidden layers; and the
last number indicates the number of output variables in
the output matrix. Figures 9–12 show the comparison of

Figure 8 Correlation coefficient vs. number of neurons for
Mn of R1.

TABLE I
Structure of the Final Networks for Mn and Mw

Mn (R1) Mw (R1) Mn (R3) Mw (R3)

State 5 8 17 19
No. of neurons 7-11-1 7-5-5-1 7-9-1 7-7-1
Transfer function

(hidden layer) tan-sigmoid tan-sigmoid tan-sigmoid tan-sigmoid
Training method Levenberg–Marquardt Levenberg–Marquardt Levenberg–Marquardt Levenberg–Marquardt
Correlation coefficient 0.999 1 1 0.998

Figure 7 Mean square error vs. number of neurons for Mn
of R1. (MSE � mean square error.)
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experimental and predicted Mn and Mw of PBR from R1
and R3, respectively.

Figures 13 and 14 show the comparison of the
model predicted Mn and Mw from R1 and R3, respec-
tively, with those determined by GPC for all the train-
ing and testing samples. The results obtained with the
networks are excellent. However, in commercial reac-
tors, the process conditions are often time varying,
and the neural networks developed under these con-
ditions lead to local models that define functions that
are applicable in the neighborhood of the current state
of the plant as they are developed using only those
states of the plant that were close to the current one.
The range of the model can be updated whenever Mn
and Mw are measured in the lab for the new samples.
Until then, the Mn and Mw can be estimated using
these trained neural networks.

Parametric sensitivity

The parametric sensitivity of the networks developed for
Mn and Mw of R1 and R3 has been tested by changing
each variable over a certain range keeping the other
variables constant so that the predicted Mn and Mw are
in the range covered in the network development. The
value of each variable used for simulation is between the
minimum and maximum range of that variable used in
a commercial process.

Effect of monomer purity

The monomer purity is in the range of 0.991 and 0.999 for
most of the operating data collected corresponding to the
time of the samples collected for the molecular weight
analysis. Degree of purification of the monomer affects
molecular weight. Its control is very important for poly-

Figure 11 Comparison between experimental and pre-
dicted Mn of R3.

Figure 12 Comparison between experimental and pre-
dicted Mw of R3.

Figure 9 Comparison between experimental and predicted
Mn of R1.

Figure 10 Comparison between experimental and pre-
dicted Mw of R1.
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merization. It is required to maintain the monomer’s
purity and impurities in ppm order. The simulations
carried out with the trained networks did not indicate a
significant effect of monomer purity on both Mn and
Mw of R1. The monomer purity is very high initially in
the first reactor. This may be the reason that the Mn and
Mw are almost constant with change in purity, whereas
both Mn and Mw of R3 showed an increasing trend with
increasing purity. In the last reactor there is a chance of
building up of impurities with the addition of incremen-
tal solvent, etc.

The results reflected this observation of increasing
molecular weight with purity. However, controlling of
the physical properties of the polymer by a change in the
conditions of the purification system requires much time
until the solvent and monomer in the purification system
and dry tank are completely replaced by new ones.
Hence, this method is not suitable for rapid action.

Effect of flow rates of solvent and monomer

The reaction temperature in butadiene polymerization is
controlled by controlling the temperature of the solvent
charged, solvent to monomer ratio (S/M), and the reac-
tor jacket liquid level. A lower S/M gives a higher mono-
mer concentration and, hence, a higher reaction velocity.
A low S/M causes disadvantages, including need for the
removal of reaction heat in the reactor and too high a
load on the agitator. In addition, a higher reaction rate
gives a higher viscosity of the polymer liquid and makes
the removal of reaction heat difficult. As molecular
weight is directly proportional to viscosity, an increase of
viscosity indicates an increase of molecular weight. The

model predicted trend shows the increase of both Mn
and Mw of R1 and R3 with monomer flow rate and
tends to decrease after reaching a certain level. Hence,
increment solvent shall be added to the second and third
reactors to control them efficiently.

The model predicted Mn and Mw increased with an
increase in solvent flow rate. At constant monomer
flow rate, S/M increases with an increase in solvent
flow rate, which reduces the severity of the reaction.

Effect of temperature

The predicted molecular weight decreased with an in-
crease in polymerization temperature. Generally, in nor-
mal operation, the temperature is maintained constant to
maintain the product quality and stable operation. It is
an effective means for control of solution viscosity.

Effect of catalyst concentration

In most of the Ziegler–Natta catalyst systems used for
production of PBR, the molecular weight of the polymer
is inversely proportional to catalyst concentration. A
similar trend of decreasing molecular weight with in-
creasing catalyst level is observed for both R1 and R3.

Effect of catalyst ratios

The model predicted molecular weight increased with
an increase in cocatalyst to catalyst ratio up to a certain
value. Generally, this ratio is maintained at an opti-
mum value in normal operation.

Figure 13 Measured and predicted Mn and Mw vs. sample number.

Figure 14 Measured and predicted Mn and Mw vs. sample number.
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Effect of chain modifier

The amount of chain modifier has to be increased to
decrease molecular weight. The model predicted re-
sults show a similar trend. The chain modifier termi-
nates the growing chains and promotes fresh chains in
such a way that the average molecular weight of the
polymer remains within a close range.

Figure 15 shows the predicted trends of the critical
process variables on the molecular weight of PBR. The
sensitivity of the process variables has been tested to
make sure that the networks have learned the trends
properly. In real operation, a single parameter alone is
not varied. The process variables are varied in such a
way that the plant operation is stable and ratios of
solvent to monomer, cocatalyst to catalyst, and chain
modifier to cocatalyst remain in the range required to
get the desired product quality.

CONCLUSION

Molecular weight distribution and their averages of
around one hundred PBR samples collected over a
wide range of operating conditions were measured

using conventional GPC and the universal calibration
method. The neural network approach has been used
for inferential estimation of number and weight aver-
age molecular weights of polybutadiene rubber from
the first and last reactor outlet. The trained networks
can be used to estimate Mn and Mw of PBR from both
R1 and R3 instantaneously at the same rate as second-
ary variables and, hence, corrective action can be
taken in case of off spec product.
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